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Table I. Kinetics of Dissociation and Internal Electron Transfer 

of (NH3)5Co"NTj)—(CjXFe"(CN)3
0 

105[CO(NH3);,-
(4,4'-bipy)3+k 

M 

5.50 
7.28 
7.75 
8.57 
9.75 

10.0 
10.0 
10.4 
10.4 
11.1 
11.1 

10"[Fe(CN).-,-
OH 2

1 I , , M 

14.1 
20.0 
19.5 
9.3 
9.9 
8.4 

22.9 
9.9 

20.0 
9.6 

11.5 
7 . 1 ' 
7.1 = 

103Or11 + 
ket),

b sec - 1 

6.9 
6.8 
7.0d 

7.5 
6.9 
7.1 
7.3 
7.1 
7.2 
7.3 
6.7d 

\0lk-uc 

sec - 1 

7.7 
7.7 
7.6^ 
7.6 
7.7 
7.6 
8.0 
7.9 
7.8 
8.0 
8.0d 

7.6 
7.6 

\0>k,t, 
sec 1 

2.4 
2.5 
2.6 
2.5 
2.7 
2.5 
2.7 
2.9 
2.8 
2.8 
2.8 

" At 25°, pH 8.0 (trizma buffer 5.0 X 10"3 M), n = 0.10 M(Li-
ClO4), [ascorbic acid] = (0.51-2.42) X 10-3 M, [EDTA2"] = 
(0.93-1.86) X 10-" M, [pyridine] = (4.14-11.0) X 10-2 M. h From 
measurements at 550 nm. c From measurements at 450 nm. 
d Measurements at 455 nm from time of mixing and fitted simul­
taneously to a two exponential decay with constants ki + feet and 
/C-L, respectively. e This is the concentration of Fe(CN)s(4,4'-
bipy)3-. 

with Fe(CN) 5 OH 2
3 - , the reaction scheme becomes that 

shown in Scheme I. Values of kel + ki were obtained by 
fitting the observed absorbances A t at 550 nm to A t = A „ 
+ (Ao -Ae,) exp[—(fcet + kd)t]. A*> and &et + ^d were 
taken as adjustable parameters. Values of k-t were ob­
tained by fitting the observed absorbances A t at 450 nm to 
Ai = Ao1 + (/4 i — Aa) exp(—k -\_t), where values of A t 

were taken at sufficiently long times to ensure that less than 
2% of I remained, A] was the first value of Au and A* 
was measured after ten half-lives. Values of ket + ki and 
k -L are listed in columns 3 and 4 of Table I. Additional 
confirmation for the proposed scheme comes from the ex-
Scheme I 

I —^-* Fe(CN)5(4,4'-bipy)3 ' 

Fe(CN)5Py3" 

cellent agreement between measurements of the rate of dis­
sociation of Fe(CN)5(4,4'-bipy)3 - prepared by reaction of 
Fe(CN) 5OFh 3" with 4,4'-bipyridine (experiments 12 and 
13) and measurements in the presence of cobalt. 

To obtain values of k et and k d, the yields of Fe(CN)5(4,4'-
bipy) 3 - and Fe(CN)5py3~ before equilibration must be 
known. Extrapolating the absorbance at 450 nm to the time 
of addition of pyridine, yielded the fraction of Fe(CN)5(4,4'-
b ipy) 3 - , / , produced in the reaction if no equilibration takes 
place as (^ e x t r a p - A^)/(Abipy - Apy), where Ah-lpy and 
Apy are the absorbances Fe(CN)5(4,4'-bipy)3 - and 
Fe(CN)5py3 - , respectively, at a concentration equal to the 
iron concentration in the run. Values of /cet, calculated from 
kei =f(ket + kd~ k-\_), are listed in column 5 of Table I. 

From the average values of A:et + ^d = 7.1 X 10~3 sec - 1 

and kel = 2.6 X 10 - 3 sec - 1 , we calculate 4 d = 4.5 X 1 0 - 3 

sec - 1 . From the latter and k{ = 5.5 X 103 M - 1 sec - 1 , we 
obtain 1.2 X 106 M - ' for the equilibrium constant of reac­
tion 1. This compares favorably with the range (0.3-2.0) X 
106 for the equilibrium constants of reactions of Fe(C-
N ) 5 O F h 3 - with nitrogen heterocycles." The value of kf is 
somewhat higher than the values (3 J4) X 102 M - 1 sec - 1 

for neutral nitrogen heterocycles, and the increase in rate 
with increasing positive charge of the entering ligand 
suggests an ion pair, dissociative mechanism for the substi­
tution reactions of Fe(CN) 5 OH 2

3 - . 1 2 

The radicals derived by one-electron reduction of proton-
ated 4,4'-bipyridine13 or the dimethyl derivative (methyl 
viologen)14 are relatively stable, and it is appropriate to in­
quire if a chemical mechanism is operative in the electron 
transfer mediated by 4,4'-bipyridine. However, the low re­
ducing power of Fe (CN) 5 OH 2

3 - (E0 = -0 .54 V)15 com­
bined with the difficulty in reducing protonated 4,4'-bipyri-
dine or methyl viologen (E0 = 0.44 V)13 render the chemi­
cal mechanism unlikely.16 We suggest that the resonance 
exchange mechanism is operative and that the slow rate of 
intramolecular electron transfer is associated with two fac­
tors: a symmetry factor with iron(II) being a 7r-donor and 
4,4'-bipyridine a x-conductor, but cobalt(III) being a o-ac-
ceptor, and a spatial factor, the large distance between the 
two metal centers preventing the coupling of inner-sphere 
and solvation shell reorganizations necessary for electron 
transfer.17 Additional work using other nitrogen heterocy­
cles as electron mediators is in progress. 
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Spin Density Distribution in and Rearrangement of a 
Naphthobicyclobutane Radical Anion 

Sir: 

A few examples of ring cleavage reactions in radical an­
ions are known1 which, if concerted, are cycloreversion 
reactions2 of the type a2 s 4- a2s. In this communication, we 
wish to report the results of our nmr and esr studies of the 
NaK alloy reduction of the naphthobicyclobutane ( I ) 3 (for­
mally [r,8']naphthotricyclo[4.1.0.05-7]hept-2-ene), which 
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Table I. HFSCs" in Gauss of the Radical Anions of 1 and 2 

Radical 
Anion 

of 

1 
21 

(-

P 

- ) 4 . 5 9 
4.89 

(-

m 

- ) 1 . 
2. 

95 
11 

(-

0 

- ) 1 
1 

.59 

.50 

IS 

(+)0. 
0. 

18 
19 

(-

y 

- ) 0 . 8 8 
0.64 
0.93 

° The signs indicated are based upon an INDO calculation on 
I - (vide infra). 

indicate that the strained radical anion of 1 undergoes a 
facile ring opening reaction; this reaction, if concerted, rep­
resents to our knowledge the first report of a ff2a + a 2 a cy-
cloreversion reaction occurring in a radical anion. This 
study also affords the first report of the spin density distri­
bution in a radical anion containing the bicyclobutane moi­
ety. 

Reduction of a dilute solution (~10~4 M) of 1 in 2:1 2-
methyltetrahydrofuran-l,2-dimethoxyethane with NaK 
alloy at ca. —110° (EtOH slush) afforded a pinkish red 
radical anion of 1; analysis of the esr spectrum of h~ re­
corded at —100° afforded the hyperfine splitting constants 
(hfsc's) shown in Table I. The assignments of the hfsc's of 
I* - were made by comparison with the hfsc's previously re­
ported4 for the closely related radical anion of 2 (see Table 
I). 

No noticeable changes occurred in the esr spectrum of 
l-~ upon warming of the sample to - 8 0 ° . Upon warming to 
- 6 0 ° , however, the esr spectrum of l-~ began to fade and 
changed into a rather poorly resolved spectrum that ap­
peared to be due to a mixture of two radical species. Upon 
continued warming to —20° the observed spectrum was 
again due to only a single radical species and was analyzed 
as follows: 6.40 (2 H), 2.70 (2 H), 1.92 (2 H), 0.78 (2 H), 
and 0.20 G (2 H). This latter spectrum is due to the forma­
tion of the radical anion of pleiadiene (3), which has pre­
viously been reported.5 Upon recooling of the sample to 
- 1 0 0 ° , the intensity6 of the esr spectrum of 3-~ was ob­
served to be equal to the intensity of the initial esr spectrum 
of h~ at - 1 0 0 ° , which indicates that all of the 1«~ initially 
present has smoothly rearranged7 '9 to form 3*~ as the only 
detectable product. 

The ring opening of 1 upon reduction with NaK was also 
confirmed using nmr spectroscopy. Reduction of a 0.3 M 
solution of 1 in THF-^ 8 with NaK at 25° afforded a pur­
plish solution in which the nmr multiplets of 1 were absent 
and, after extensive contact with the alloy, four new nmr 
multiplets appeared which were centered at 5 3.26, 3.79, 
6.05, and 6.79. A similar reduction of authentic 3 with NaK 
afforded a purple solution which also exhibited the same 
four nmr multiplets; we thus assign these nmr multiplets11 

to the pleiadiene dianion. The sample upon quenching with 
benzoquinone followed by excess water and extraction with 
ether afforded a residue which contained pleiadiene as de­
termined by nmr analysis. 

An INDO calculation12 on h~ afforded theoretical hfsc's 
for this species (Table II) whose magnitudes were in fairly 
good agreement with the corresponding experimental hfsc's. 
This good correlation of the theoretical and experimental 
splittings of !•" together with the close similarity of the 

Table II. Theoretical H F S C 
by the INDOMethod 

p m 

- 4 . 3 4 - 0 . 9 3 

s for 1 • Calculated" 

Position 
o (3 

- 1 . 0 9 +0 .08 

7 

- 0 . 5 0 

"The known bond lengths of naphthalene and bicyclobutane13 

were used in this calculation. Bond lengths of 1.52 A were assumed 
for the bonds joining the naphthalene and bicyclobutane moieties 
in 1 •". The hfsc's are in units of G. 

splittings in I* - and 2-~ suggests there is probably not a 
strong interaction of the Walsh x-like orbitals14 of the bicy­
clobutane moiety with the homo ( ^ ) of the naphthalene 
moiety in I* - . If present to an appreciable extent, such an 
interaction'5 might be expected to perturb at least some of 
the spin densities of I* - from the corresponding values ob­
served for 2 , _ . 

Evidence that the geometry of the bicyclobutane portion 
of 1 (and presumably I - - also) is very similar to the geome­
try of bicyclobutane itself is provided by the 13C nmr data16 

for 1. The /3- and 7-carbon atoms in 1 exhibited 1 3C-H cou­
pling constants of 162 and 205 Hz, respectively, which are 
in excellent agreement with the corresponding values of 153 
and 205 Hz previously reported17 for bicyclobutane. 

The "driving force" for the transformation of 1»~ into 3 , _ 

almost certainly involves the relief of strain upon ring open­
ing of 1«~; approximately 63 kcal/mol18 of strain energy is 
released upon opening of the bicyclobutane ring of I* -. A 
second factor which may contribute to the "driving force" is 
the lowering of the energy of the lowest antibonding MO, 
which the unpaired electron occupies, upon transformation 
of h~ into 3 , _ . In 1»~, the unpaired electron occupies ^ of 
the naphthalene moiety which has an HMO energy of 
0.62|/3|. After ring opening to 3»~, however, the unpaired 
electron occupies ^ of the pleiadiene -K system which has a 
lower HMO energy of 0.46|/3|. The potential importance of 
this latter factor in the ring opening of strained radical an­
ions has previously been emphasized.19 

The thermal transformation of I - - into 3»~ is in sharp 
contrast to the thermal reaction of neutral 1, which affords3 

only the naphthocyclobutene 4 upon thermolysis, via a 

pathway which, if concerted, appears to involve an initial 
thermally allowed ff2a + a2s cycloreversion. Ring opening of 
1 to give 3 is also the mode of reaction of the (presumed 
first) excited state of 1 as previously reported,3 and a con­
certed ring opening in this case is a "photochemically al­
lowed" process. Although it is, of course, not possible to 
demonstrate conclusively that the transformation of 1»~ 
into 3 , _ involves a concerted reaction pathway, a (concert­
ed) cycloreversion of the type ff2a + ^ 3 (eq 1) is consistent 

(1) 

with our experimental findings and is an attractive hypothe­
sis as the mechanism for this transformation. 

The species 1, excited 1, and 1»~ thus provide a good ex­
ample of a molecular system in which the chemistry of the 
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radical anion is the same as that of the excited state of the 
corresponding neutral molecule and in which the chemistry 
of the ground state of the neutral molecule is distinctly dif­
ferent from either of the former. That the mode of reaction 
of a radical anion might parallel the mode of reaction of the 
lowest excited state of the corresponding neutral molecule 
can be anticipated.20 The only difference between the two 
species in simple theory is that the radical anion contains an 
additional electron in a lower orbital; both, however, con­
tain one electron in the same frontier orbital, which so often 
plays a deciding role in determining the extent and direction 
of chemical reactivity.2-21 
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